
CAOS tutorial

Page 1

Access CAOS at: http://caos-iccd.necst.it/

Page 2

Click on “click here
to start” to start the

optimization
process

Start a new project or load your work right were you left it

Use CAOS to optimize your application

Page 3

Create a new
project

GUI Overview

Page 4

Keep track of the phase that is being performed using the navigation window

GUI Overview

Page 5

Check the status of the phase on the top-right part of the screen

GUI Overview

Page 6

One of the main features of CAOS is Modularity
– Every phase is backed up by a CAOS module that can be accessed simply specifying its hostname and port
– The CAOS module panel provides information regarding the status of the specific module

IR GENERATION

Page 7

IR Generation generates the CAOS intermediate representation from the user’s source code

For this phase you need to specify:
– A zip/tar archive containing the source code of the application to optimize
– A program description JSON file specifying the source code language and how to compile the application

Page 8

Demo applications

Demo applications are available at: https://github.com/necst/tutorial_iccd17_code/

After downloading the repository, you can access the CAOS demo apps under the “caos” folder:
– Vessel Segmentation
– Smith-Waterman

In the following slides we will refer to the Vessel Segmentation demo application

https://github.com/necst/tutorial_iccd17_code/

Program Description

Page 9

Provides information regarding the
source code:
– Source code language
– Supported compilers
– Arguments needed for compiling

IR GENERATION

Page 10

Once the two files have been loaded, by clicking on Run IR Generation CAOS:
– Identifies all the functions within the application
– Provides a Program Static Callgraph highlighting the caller/calle relationships

IR GENERATION

Page 11

Phase state becomes READY and we can click on complete to move to the next phase

IR GENERATION

Page 12

Phase state becomes COMPLETED and CAOS shows the new phase in the navigation window

APPLICABILITY CHECK

Page 13

APPLICABILITY CHECK verifies which CAOS architectural templates can be used for
the given user code and target architecture
This phase requires:
– A JSON file providing the target architecture description
– A selection of the architectural templates to check

APPLICABILITY CHECK – Architecture Description

Page 14

Describes the target architecture on which
the application will be executed
Two levels specification
– Node description
– System description

Let’s define the architecture description for
a system consisting of a single
f1.2xlarge instance…

APPLICABILITY CHECK – Architecture Description

Page 15

Defines the type of devices to reference
within the node specification
– Intel CPU
– Xilinx XCVU9P-FLGB2104-2-I board

Instantiates the devices and specifies the
device acting as “host” for the node

APPLICABILITY CHECK – Architecture Description

Page 16

Specifies the available connections
between the devices of the node

Defines how the devices are
interconnected

APPLICABILITY CHECK – Architecture Description

Page 17

Defines the number of nodes available
within the system and how they are
interconnected

For the f1.2xlarge instance we simply
define a single-node system

APPLICABILITY CHECK – Architectural Template

Page 18

Select which architectural template(s) you want CAOS to consider for your application
– Click Save
– Click on Run templates applicability check

APPLICABILITY CHECK – Result

Page 19

The Architectural Template Validation shows which architectural templates are being supported,
and on which devices

APPLICABILITY CHECK – Result

Page 20

Provides information on which functions are suitable for a hardware acceleration

PROFILING

Page 21

Click “Add…” on Profiling Dataset to provide a dataset for the profiling phase:
– Choose a Name
– Upload an Archive containing the dataset (input files for the application)
– Command line arguments necessary for the execution

N.B. If the source code auto-generates the dataset, the archive and arguments might not be needed

PROFILING

Page 22

Click SUBMIT and Profile datasets to start code profiling

PROFILING

Page 23

Profiling result
– Identifies the most computationally intensive functions of the application
– Provides percentages regarding self and total execution time

PARTITIONING

Page 24

For each function that is candidate for Hardware Acceleration it is possible to decide to
force a hardware or software implementation, or to let CAOS decide

PARTITIONING

Page 25

After clicking Run partitioning CAOS automatically selects which functions to accelerate
on hardware

FUNCTIONS OPTIMIZATION

Page 26

Within the Functions Optimization phase, we can specify
the version of the code we want to work on by clicking on the
corresponding folder
Initially, only one version of the code is available
After selecting the code version, we can either decide to:
a) Click complete and move to the next phase
b) Click on Start Optimization to start optimizing the code

FUNCTIONS OPTIMIZATION – Pre-Opt IR Generation

Page 27

During Function Optimization there are multiple sub-phases
This first one, generates an intermediate representation of the code before optimizing it

FUNCTIONS OPTIMIZATION – Static Code Analysis

Page 28

The Static Code Analysis phase provides a set of properties (such as expected latency)
for all the functions that are candidates for hardware acceleration

FUNCTIONS OPTIMIZATION – Hardware Estimation

Page 29

By clicking on Run hardware estimation CAOS estimates the amount of resources
needed for implementing the functions on the FPGA

FUNCTIONS OPTIMIZATION – Performance Estimation

Page 30

After hardware estimation,
CAOS estimates
performance suggesting
potential optimizations

FUNCTIONS OPTIMIZATION – Code Optimization

Page 31

Within Code Optimization sub-phase, it is possible to select among the suggested optimizations
By clicking Apply code optimizations the code will be modified accordingly

FUNCTIONS OPTIMIZATION – Post-Opt IR Generation

Page 32

After having applied one of the suggested code optimizations the IR might have changed
The Post-Opt IR Generation sub-phase allows to regenerate the IR.

FUNCTIONS OPTIMIZATION

Page 33

The optimization process is complete, we can either:
– try to apply more optimizations by selecting the new code version and clicking on Start Optimization
– select the desired code version and move to the implementation phase

IMPLEMENTATION

Page 34

During the Implementation phase CAOS will produce the host, kernel file and Makefile for SDAccel

Once the phase is completed, click on the Implementation Archive to download the code

After running the implementation, the output archive is also accessible on the server at:

~/Documents/CAOS_outputs

Emulate / Build the final application

Page 35

Upload the CAOS archive to an AWS instance
– scp -i <pem file> <CAOS-ARCHIVE>.zip centos@<public_dns entry>:~/

SSH to the AWS Instance and load the SDAccel settings
– ssh -i <pem file> centos@<public_dns entry>

– cd $AWS_FPGA_REPO_DIR

– source sdaccel_setup.sh

– source /opt/Xilinx/SDx/2017.1.op/settings64.sh

Unzip the CAOS archive
– cd ~/

– unzip <CAOS-ARCHIVE>.zip

– cd output

Use the Makefile to run HW / SW emulation or build the application
– make emulation TARGET=sw_emu

– make emulation TARGET=hw_emu

– make build TARGET=hw

Save the CAOS project

Page 36

CAOS flow is over, remember to save your project for future use, and then close it.

